
Audio System Toolbox™

Getting Started Guide

R2016a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Audio System Toolbox™ Getting Started Guide
© COPYRIGHT 2016 by MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

March 2016 Online only New for Version 1.0 (Release 2016a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Introduction
1

Audio System Toolbox Product Description 1-2
Key Features . 1-2

Acknowledgements . 1-3

Export a MATLAB Plugin to a DAW
2

Export a MATLAB Plugin to a DAW . 2-2
Plugin Development Workflow . 2-2
Considerations When Generating Audio Plugins 2-2
How Audio Plugins Interact with the DAW Environment . . . 2-3

Desktop Real-Time Audio Acceleration with
MATLAB Coder

3
Desktop Real-Time Audio Acceleration with MATLAB

Coder . 3-2
Introduction . 3-2
Notch Filtering . 3-2
C Code Generation Speedup . 3-3

iv Contents

Audio I/O: Buffering, Latency, and Throughput
4

Audio I/O: Buffering, Latency, and Throughput 4-2
Input Audio Stream Signal . 4-2
Output Audio Stream Signal . 4-3

What Are DAWs, Audio Plugins, and MIDI
Controllers?

5
What Are DAWs, Audio Plugins, and MIDI Controllers? 5-2

Digital Audio Workstation (DAW) . 5-2
Audio Plugins . 5-2
Musical Instrument Digital Interface (MIDI) 5-3

Real-Time Audio in MATLAB
6

Real-Time Audio in MATLAB . 6-2
Create a Development Test Bench . 6-2
Quick Start Examples . 6-11

Design an Audio Plugin
7

Design an Audio Plugin . 7-2
Role of Audio Plugins in Audio System Toolbox 7-2
Defining Audio Plugins in the MATLAB Environment 7-2
Design a Basic Plugin . 7-3
Design a System Object Plugin . 7-10
Quick Start Basic Plugin . 7-12
Quick Start Basic Source Plugin . 7-14

v

Quick Start System Object Plugin . 7-15
Quick Start System Object Source Plugin 7-17
Audio System Toolbox Extended Terminology 7-19

Real-Time Audio in Simulink
8

Real-Time Audio in Simulink . 8-2
Create Model Using Audio System Toolbox Simulink Model

Templates . 8-2
Add Audio System Toolbox Blocks to Model 8-3
Recommended Settings for Audio Signal Processing 8-7

Convert MATLAB Code to an Audio Plugin
9

Convert MATLAB Code to an Audio Plugin 9-2
Inspect Existing MATLAB Script . 9-2
Convert MATLAB Script to Plugin Class 9-4

Convert Audio Plugin System Objects to Simulink
Blocks

10
Convert Audio Plugin System Objects to Simulink Blocks . 10-2

Open the Basic Audio Player Template in Simulink 10-2
Import Audio Plugin Functionality 10-2
Create an Audio Plugin Block Interface 10-3
Add a Time Scope . 10-6
Run the Model . 10-8

1

Introduction

• “Audio System Toolbox Product Description” on page 1-2
• “Acknowledgements” on page 1-3

1 Introduction

1-2

Audio System Toolbox Product Description
Design and test audio processing systems

Audio System Toolbox™ provides algorithms and tools for the design, simulation, and
desktop prototyping of audio processing systems. It enables low-latency signal streaming
from and to audio interfaces, interactive parameter tuning, and automatic generation of
audio plugins for digital audio workstations.

Audio System Toolbox includes libraries of audio processing algorithms (such as
filtering, equalization, dynamic range control, and reverberation), sources (such as audio
oscillators and wavetable synthesizers), and measurements (such as A- and C-weighting).
Interfaces to external MIDI controls and low-latency audio drivers such as ASIO™,
ALSA, and CoreAudio enable you to validate multichannel audio designs in MATLAB®

or Simulink®. You can generate VST plugins from MATLAB code. For simulation
acceleration or desktop prototyping, the toolbox supports C/C++ code generation.

Algorithms are available as MATLAB functions, System objects, and Simulink blocks.

Key Features

• VST plugin generation for digital audio workstations
• Interfaces to ASIO, ALSA, CoreAudio, and other low-latency audio drivers
• Interfaces to MIDI controls for real-time tuning of MATLAB and Simulink

simulations
• Audio processing algorithms, sources, and measurements for crossover and

equalization filtering, dynamic range control, reverberation, wavetable synthesis, and
other tasks

• Support for C code generation

 Acknowledgements

1-3

Acknowledgements

VST is a trademark and software of Steinberg Media Technologies GmbH.

ASIO is a trademark and software of Steinberg Media Technologies GmbH.

2

Export a MATLAB Plugin to a DAW

2 Export a MATLAB Plugin to a DAW

2-2

Export a MATLAB Plugin to a DAW

In this section...

“Plugin Development Workflow” on page 2-2
“Considerations When Generating Audio Plugins” on page 2-2
“How Audio Plugins Interact with the DAW Environment” on page 2-3

Audio System Toolbox enables generation of VST plugins from MATLAB source code by
using the generateAudioPlugin function. The generated plugin is compatible with
32-bit and 64-bit Windows, and 64-bit Mac host applications. After you generate a VST
plugin, you can use your generated audio plugin in a digital audio workstation (DAW).

Plugin Development Workflow

1 Design an audio plugin. For a tutorial on audio plugin architecture and design in the
MATLAB environment, See “Design an Audio Plugin” on page 7-2.

2 Validate your audio plugin using the validateAudioPlugin function.

validateAudioPlugin myAudioPlugin

3 Test your audio plugin using Audio Test Bench.

audioTestBench myAudioPlugin

4 Generate your audio plugin using the generateAudioPlugin function.

generateAudioPlugin myAudioPlugin

5 Use your generated audio plugin in a DAW.

Considerations When Generating Audio Plugins

• Your plugin must be compatible with MATLAB code generation. See “MATLAB
Programming for Code Generation” for more information.

• Your generated plugin must be compatible with DAW environments. The DAW
environment:

• Determines the sample rate and frame size at which a plugin is run, both of which
are variable.

 Export a MATLAB Plugin to a DAW

2-3

• Calls the reset function of your plugin at the beginning of each use and if the
sample rate changes.

• Requires a consistent input and output frame size for the plugin’s processing
function.

• Must be synchronized with plugin parameters. Therefore, a plugin must not
modify properties associated with parameters.

• Requires that plugin properties associated with parameters are scalar values.

Use the validateAudioPlugin, Audio Test Bench, and generateAudioPlugin
tools to guide your audio plugin into a valid form capable of generation.

How Audio Plugins Interact with the DAW Environment

After you generate your plugin, plug it into a DAW environment. See documentation on
your specific DAW for details on adding plugins.

The audio plugin in the DAW environment interacts primarily through the processing
function, reset function, and interface properties of your plugin.

Initialization and Reset

• The DAW environment calls the reset function of the plugin the first time the plugin
is used, or any time the sample rate of the DAW environment is modified. You can use
the getSampleRate function to query the sample rate of the environment.

Processing

• The DAW environment passes a frame of an audio signal to the plugin. The DAW
determines the frame size. If the audio plugin is a source audio plugin, the DAW does
not pass an input audio signal.

• The processing function of your plugin performs the frame-based audio processing
algorithm you specified, and updates internal plugin properties as needed. Plugins
must not write to properties associated with parameters.

• The processing function of your plugin passes the processed audio signal out to
the DAW environment. The frame size of the output signal must match the frame
size of the input signal. If the audio plugin is a source audio plugin, you must use
getSamplesPerFrame to determine the output frame size. Because the environment
frame rate is variable, you must call getSamplesPerFrame for each output frame.

• Processing is performed iteratively frame by frame on an audio signal.

2 Export a MATLAB Plugin to a DAW

2-4

Tunability

• If you modify a parameter through the plugin dialog box, the synchronized public
property updates at that time. You can use the set method of MATLAB classes to
modify private properties.

More About
• “What Are DAWs, Audio Plugins, and MIDI Controllers?” on page 5-2
• “Design an Audio Plugin” on page 7-2
• “Convert MATLAB Code to an Audio Plugin” on page 9-2

3

Desktop Real-Time Audio Acceleration
with MATLAB Coder

3 Desktop Real-Time Audio Acceleration with MATLAB Coder

3-2

Desktop Real-Time Audio Acceleration with MATLAB Coder

In this section...

“Introduction” on page 3-2
“Notch Filtering” on page 3-2
“C Code Generation Speedup” on page 3-3

This example shows how to accelerate a real-time audio application using C code
generation with MATLAB Coder™. You must have the MATLAB Coder software
installed to run this example.

Introduction

Replacing parts of your MATLAB code with an automatically generated MATLAB
executable (MEX-function) can speed up simulation. Using MATLAB Coder, you can
generate readable and portable C code and compile it into a MEX-function that replaces
the equivalent section of your MATLAB algorithm.

This example showcases code generation using an audio notch filtering application.

Notch Filtering

A notch filter is used to eliminate a specific frequency from a signal. Typical filter design
parameters for notch filters are the notch center frequency and the 3 dB bandwidth. The
center frequency is the frequency at which the filter has a linear gain of zero. The 3 dB
bandwidth measures the frequency width of the notch of the filter computed at the half-
power or 3 dB attenuation point.

The helper function used in this example is helperAudioToneRemoval. The
function reads an audio signal corrupted by a 250 Hz sinusoidal tone from a file.
helperAudioToneRemoval uses a notch filter to remove the interfering tone and writes
the filtered signal to a file.

You can visualize the corrupted audio signal using a spectrum analyzer.

scope = dsp.SpectrumAnalyzer('SampleRate',44.1e3,...

 'RBWSource','Property','RBW',5,...

 'PlotAsTwoSidedSpectrum',false,...

 'SpectralAverages',10,...

 Desktop Real-Time Audio Acceleration with MATLAB Coder

3-3

 'FrequencySpan','Start and stop frequencies',...

 'StartFrequency',20,...

 'StopFrequency',1000,...

 'Title','Audio signal corrupted by 250 Hz tone');

reader = dsp.AudioFileReader('guitar_plus_tone.ogg');

while ~isDone(reader)

 audio = step(reader);

 step(scope,audio(:,1));

end

C Code Generation Speedup

Measure the time it takes to read the audio file, filter out the interfering tone, and write
the filtered output using MATLAB code. Because helperAudioToneRemoval writes

3 Desktop Real-Time Audio Acceleration with MATLAB Coder

3-4

an audio file output, you must have write permission in the current directory. To ensure
write access, change directory to your system’s temporary folder.

mydir = pwd; addpath(mydir); cd(tempdir);

tic;

helperAudioToneRemoval;

t1 = toc;

fprintf('MATLAB Simulation Time: %d\n',t1);

Next, generate a MEX-function from helperAudioToneRemoval using the MATLAB
Coder function, codegen.

codegen helperAudioToneRemoval

Measure the time it takes to execute the MEX-function and calculate the speedup gain
with a compiled function.

tic;

helperAudioToneRemoval_mex

t2 = toc;

fprintf('Code Generation Simulation Time: %d\n',t2);

fprintf('Speedup factor: %6.2f\n',t1/t2);

cd(mydir);

4

Audio I/O: Buffering, Latency, and
Throughput

4 Audio I/O: Buffering, Latency, and Throughput

4-2

Audio I/O: Buffering, Latency, and Throughput

Audio System Toolbox is optimized for real-time stream processing. Its input and output
System objects are efficient, low-latency, and they control all necessary parameters so
that you can trade off between throughput and latency.

This tutorial describes how MATLAB software implements real-time stream processing.
The tutorial presents key terminology and basic techniques for optimizing your stream
processing algorithm. For more detailed technical descriptions and concepts, see the
documentation for the audio I/O System objects used in this tutorial.

Input Audio Stream Signal

To acquire an audio stream from a file, use the dsp.AudioFileReader System object™. To
acquire an audio stream from a device, use the audioDeviceReader System object.

This diagram and the ordered list that follows indicate the data flow when acquiring a
monochannel signal with the audioDeviceReader System object. audioDeviceReader
specifies the driver, the input device (sound card) and its attributes, buffer size, and
provides diagnostic functionality.

1 The microphone picks up the sound and sends a continuous electrical signal to your
sound card.

2 The sound card performs analog-to-digital conversion at a sample rate, buffer size,
and bit depth specified by your audioDeviceReader object.

 Audio I/O: Buffering, Latency, and Throughput

4-3

3 The analog-to-digital converter writes audio samples into the sound card buffer. If
the buffer is full, the new samples are dropped.

4 The audioDeviceReader uses the driver to pull the oldest frame from the sound
card buffer iteratively.

Terminology and Techniques to Optimize Your audioDeviceReader

• Latency is measured as the time delay between audio entering the sound card to the
frame output by the processing stage. To minimize latency, you can:

• Optimize the processing stage. If your processing stage has reached a peak
algorithmically, consider compiling into C code using MATLAB Coder.

• Decrease the sample rate.
• Decrease the frame size.

• Overrun refers to input signal drops. Input signal drops occur when the processing
stage does not keep pace with the acquisition of samples. The number of
samples overrun is returned when you call the step or record methods of your
audioDeviceReader. To minimize overrun, you can:

• Optimize the processing stage.
• Decrease the sample rate.
• Increase the frame size.

A typical workflow includes determining the minimum sample rate for your application,
measuring overrun and latency, and then adjusting your audioDeviceReader
properties. See audioDeviceReader for more information.

Output Audio Stream Signal

To send an audio stream to a file, use the dsp.AudioFileWriter System object. To send an
audio stream to a device, use the audioDeviceWriter System object.

This diagram and the ordered list that follows indicate the data flow when playing a
monochannel signal with the audioDeviceWriter System object. audioDeviceWriter
specifies the driver, the output device (sound card) and its attributes, buffer size, and
provides diagnostic functionality.

4 Audio I/O: Buffering, Latency, and Throughput

4-4

1 The processing stage passes a frame of variable length to the audioDeviceWriter
System object.

2 audioDeviceWriter sends the frame to the sound card’s buffer. Your
audioDeviceWriter object specifies the sample rate, bit depth, and buffer size of
the sound card.

3 The sound card pulls the oldest frame from the buffer and performs analog-to-digital
conversion. The sound card sends the analog chunk to the speaker. If the buffer is
empty when the sound card tries to pull from it, the sound card outputs a region of
silence.

Terminology and Techniques to Optimize Your audioDeviceWriter

• Latency is measured as the time delay between the generation of an audio frame in
MATLAB to the time audio is heard through the speaker. To minimize latency, you
can:

• Optimize the processing stage. If your processing stage has reached a peak
algorithmically, consider compiling into C code using MATLAB Coder.

• Decrease the sample rate.
• Decrease the frame size.

• Underrun refers to output signal silence. Output signal silence occurs when the
buffer is empty when it is time for digital-to-analog conversion. The number of
samples underrun is returned when you call the step or record methods of your
audioDeviceWriter. To minimize underrun, you can:

• Optimize the processing stage.

 Audio I/O: Buffering, Latency, and Throughput

4-5

• Decrease the sample rate.
• Increase the frame size.
• Increase the buffer size. This approach applies only for audio signals with variable

frame length.

See audioDeviceWriter for more information.

See Also
dsp.AudioFileReader | dsp.AudioFileWriter | audioDeviceReader | audioDeviceWriter
| Audio Device Reader | Audio Device Writer | From Multimedia File | To
Multimedia File

More About
• “Real-Time Audio in MATLAB” on page 6-2
• “Real-Time Audio in Simulink” on page 8-2

5

What Are DAWs, Audio Plugins, and
MIDI Controllers?

5 What Are DAWs, Audio Plugins, and MIDI Controllers?

5-2

What Are DAWs, Audio Plugins, and MIDI Controllers?

In this section...

“Digital Audio Workstation (DAW)” on page 5-2
“Audio Plugins” on page 5-2
“Musical Instrument Digital Interface (MIDI)” on page 5-3

Digital Audio Workstation (DAW)

A digital audio workstation (DAW) is an electronic device or software application used
to record, edit, and produce sound files. DAWs are controlled with a user interface. Most
DAWs allow MIDI controls to tune parameters during live editing.

In the music industry, DAWs are typically used to acquire and save multiple tracks
of audio recordings, and to mix, equalize, and add audio effects. DAWs generally have
access to libraries of sounds and are used to create electronic music from scratch.
Commercial DAWs, such as those found in recording studios, can be hardware integrated
into computers.

DAWs are also used in the production of radio, television, film, podcasts, games, and
anywhere complex manipulation of audio signals is needed.

DAWs generally support plugins, which are smaller pieces of software with unique
functionality, therefore expanding the abilities of the DAW user.

Audio Plugins

Plugins are self-contained pieces of code that can be “plugged in” to DAWs to enhance
their functionality. Generally, plugins fall into the categories of audio signal processing,
analysis, or sound synthesis. Plugins usually specify a user-interface containing UI
widgets, but the DAW interface might mask it. Typical plugins include equalization,
dynamic range control, reverberation, delay, and virtual instruments.

To process streaming audio data, the DAW calls the plugin, passes in a frame of input
audio data, and receives back a frame of processed output audio data. When a plugin
parameter changes (for example, when you move a control on the plugin’s UI), the DAW
notifies the plugin of the new parameter value. Plugins usually have their own custom
UI, but DAWs also provide a generic UI for all plugins.

 What Are DAWs, Audio Plugins, and MIDI Controllers?

5-3

Audio System Toolbox supports code generation to the most common plugin format,
Steinberg’s VST (Virtual Studio Technology).

For a discussion of plugin terminology and usage in the MATLAB environment, see
“Design an Audio Plugin” on page 7-2.

Musical Instrument Digital Interface (MIDI)

Musical Instrument Digital Interface (MIDI) is a technical standard for communication
between electronic instruments, computers, and related devices. MIDI carries event
messages specific to audio signals, such as pitch and velocity, as well as control signals
for parameters such as volume, vibrato, panning, cues, and clock signals to synchronize
tempo.

MIDI controllers are devices that send MIDI messages. Common devices include
electronic keyboards or surfaces with sliders, knobs, and buttons. For DAWs, MIDI
controllers can be physical instantiations of functionality present in the DAW. The DAW
user can interact using a keyboard and mouse and MIDI controllers.

References

[1] Wikipedia. Last modified September 1, 2015. https://en.wikipedia.org/wiki/
Digital_audio_workstation.

External Websites
• MIDI Manufacturers Association

http://www.midi.org/aboutmidi/

6

Real-Time Audio in MATLAB

6 Real-Time Audio in MATLAB

6-2

Real-Time Audio in MATLAB

In this section...

“Create a Development Test Bench” on page 6-2
“Quick Start Examples” on page 6-11

Audio System Toolbox is optimized for real-time audio processing. audioDeviceReader,
audioDeviceWriter, dsp.AudioFileReader, and dsp.AudioFileWriter are designed for
streaming multichannel audio, and they provide all necessary parameters so that you
can trade off between throughput and latency.

For information on real-time processing and tips on how to optimize your algorithm, see
“Audio I/O: Buffering, Latency, and Throughput” on page 4-2.

This tutorial describes how you can implement audio stream processing in MATLAB. It
outlines the workflow for creating a development test bench and provides examples for
each stage of the workflow. Begin by inspecting the anatomy of a completed audio stream
processing test bench, then walk through the example for a description of each stage.

Create a Development Test Bench

This tutorial creates a development test bench in five steps. You begin by constructing
objects to input an audio signal to your test bench and output an audio signal from your
test bench. You then create an audio stream loop that performs frame-based processing
on your audio signal. To gain insight about your audio processing, you add scopes to
visualize the input to and output from the audio stream loop. You then develop your
audio processing algorithm. In the final stage, you make your processing algorithm
tunable in real time.

 Real-Time Audio in MATLAB

6-3

For an overview of how audio stream processing is implemented, inspect the anatomy
of the completed audio stream processing test bench. To create this test bench, walk
through the example for explanations and step-by-step instructions.

Completed Test Bench Code

frameLength = 256;

fileReader = dsp.AudioFileReader(...

 'Counting-16-44p1-mono-15secs.wav',...

 'SamplesPerFrame',frameLength);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

scope = dsp.TimeScope(...

 'SampleRate',fileReader.SampleRate,...

 'TimeSpan',16,...

6 Real-Time Audio in MATLAB

6-4

 'BufferLength',1.5e6,...

 'YLimits',[-1 1]);

dRG = noiseGate(...

 'SampleRate',fileReader.SampleRate,...

 'Threshold',-25,...

 'AttackTime',10e-3,...

 'ReleaseTime',20e-3,...

 'HoldTime',0);

visualize(dRG);

configureMIDI(dRG);

while ~isDone(fileReader)

 signal = step(fileReader);

 noisySignal = signal + 0.0025*randn(frameLength,1);

 processedSignal = step(dRG,noisySignal);

 play(deviceWriter,processedSignal);

 step(scope,[noisySignal,processedSignal]);

end

release(fileReader);

release(deviceWriter);

release(scope);

release(dRG);

1. Construct Input/Output System Objects

Your audio stream loop can read audio directly from your device or from a file, and can
write to a device or file. In this tutorial, you create an audio stream loop that reads audio
frame by frame from a file, and outputs frame by frame to a device. See “Quick Start
Examples” on page 6-11 for alternative input/output configurations.

Construct a dsp.AudioFileReader System object and specify a file. To reduce latency,
specify a small frame size as a property of the dsp.AudioFileReader System object.

Also construct an audioDeviceWriter System object. Specify your
audioDeviceWriter sample rate if the default of 44,100 Hz is not appropriate. If you do
not modify the sample rate between input and output to your audio stream loop, use the
sample rate of your input System object.

View Example Code

frameLength = 256;

 Real-Time Audio in MATLAB

6-5

fileReader = dsp.AudioFileReader(...

 'Counting-16-44p1-mono-15secs.wav',...

 'SamplesPerFrame',frameLength);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

2. Create Audio Stream Loop

An audio stream loop refers to a programming loop that iteratively:

• Reads a frame of an audio signal
• Processes the audio signal frame
• Writes the audio signal frame

In this tutorial, the input to the audio stream loop is read from a file. The output from
the audio stream loop writes to a device.

Create Audio Stream Loop with File Input and Device Output

dsp.AudioFileReader uses the step method to read in a single frame of the signal. To
read successive frames, call the step method of your dsp.AudioFileReader System
object in your audio stream loop.

audioDeviceWriter uses the play method to write a single frame of the signal. To
write successive frames, call the play method of your audioDeviceWriter System
object in your audio stream loop. Specify which signal to play as an argument of play.

View Example Code

frameLength = 256;

fileReader = dsp.AudioFileReader(...

 'Counting-16-44p1-mono-15secs.wav',...

 'SamplesPerFrame',frameLength);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

while ~isDone(fileReader) %<---

 signal = step(fileReader); %<---

 play(deviceWriter,signal); %<---

end %<---

release(fileReader); %<---

release(deviceWriter); %<---

6 Real-Time Audio in MATLAB

6-6

All System objects have a release method. As a best practice, release your System
object after use, especially when a System object is communicating with a hardware
device such as your sound card.

3. Add Scopes

There are several scopes available to the Audio System Toolbox user. The two most
common are the dsp.TimeScope and the dsp.SpectrumAnalyzer.

This tutorial uses the dsp.TimeScope System object to visualize the audio signal.
Add Time Scope

To display an audio signal in the time domain, construct a dsp.TimeScope System
object. To aid visualization, specify necessary dsp.TimeScope properties, such as
TimeSpan, BufferLength, and YLimits.

dsp.TimeScope uses the step method to update your plot and display the current
frame of a signal. To display your signal in real time, call the step method of your
dsp.TimeScope System object in an audio stream loop. Specify which signals to display
as arguments of your step method call.

View Example Code

frameLength = 256;

fileReader = dsp.AudioFileReader(...

 'Counting-16-44p1-mono-15secs.wav',...

 'SamplesPerFrame',frameLength);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

scope = dsp.TimeScope(... %<---

 'SampleRate',fileReader.SampleRate,... %<---

 'TimeSpan',16,... %<---

 'BufferLength',1.5e6,... %<---

 'YLimits',[-1,1]); %<---

while ~isDone(fileReader)

 signal = step(fileReader);

 play(deviceWriter,signal);

 step(scope,signal); %<---

end

release(fileReader);

release(deviceWriter);

release(scope); %<---

 Real-Time Audio in MATLAB

6-7

4. Develop Processing Algorithm

In most applications, you want to process your audio signal in the audio stream loop. The
processing stage can be

• An inline script in the audio stream loop
• A separate function called in the audio stream loop
• A System object with a method called in the audio stream loop

In this tutorial, you call the step method of the noiseGate System object to process the
signal in the audio stream loop.

Process Signal with noiseGate

Construct a noiseGate System object. Specify your noiseGate System object sample
rate if the default of 44,100 Hz is not appropriate. As a best practice, use the sample
rate of your input System object. To achieve the aims of your audio processing, specify
necessary noiseGate properties, such as Threshold, AttackTime, ReleaseTime, and
HoldTime.

To process your audio signal, call the step method of your noiseeGate System object in
an audio stream loop.

In this tutorial, you add random Gaussian noise to the audio stream input to show a
possible use case of the noiseGate System object.

View Example Code

frameLength = 256;

fileReader = dsp.AudioFileReader(...

 'Counting-16-44p1-mono-15secs.wav',...

 'SamplesPerFrame',frameLength);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

scope = dsp.TimeScope(...

 'SampleRate',fileReader.SampleRate,...

 'TimeSpan',16,...

 'BufferLength',1.5e6,...

 'YLimits',[-1,1]);

dRG = noiseGate(... %<---

 'SampleRate',fileReader.SampleRate,... %<---

 'Threshold',-25,... %<---

 'AttackTime',10e-3,... %<---

6 Real-Time Audio in MATLAB

6-8

 'ReleaseTime',20e-3,... %<---

 'HoldTime',0); %<---

while ~isDone(fileReader)

 signal = step(fileReader);

 noisySignal = signal + 0.0025*randn(frameLength,1); %<---

 processedSignal = step(dRG,noisySignal); %<---

 play(deviceWriter,processedSignal); %<---

 step(scope,[noisySignal,processedSignal]); %<---

end

release(fileReader);

release(deviceWriter);

release(scope);

release(dRG); %<---

5. Add Tunability

MATLAB provides several options to interactively tune your algorithm with stream
processing.
Add User Interface

MATLAB provides several user interfaces (UI) to inspect and interact with your code.
You can use:

• The Audio Test Bench, which provides UI-based exercises for audioPlugin classes and
most Audio System Toolbox System objects.

• The built-in methods of Audio System Toolbox System objects for visualizing key
characteristics of your processing algorithms. Then you can tune them in real time
with MIDI controls.

• A custom-built user interface. See GUI Building for a tutorial.

This tutorial uses the visualize method of the noiseGate System object to observe its
static characteristics.

View Example Code

frameLength = 256;

fileReader = dsp.AudioFileReader(...

 'Counting-16-44p1-mono-15secs.wav',...

 'SamplesPerFrame',frameLength);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

 Real-Time Audio in MATLAB

6-9

scope = dsp.TimeScope(...

 'SampleRate',fileReader.SampleRate,...

 'TimeSpan',16,...

 'BufferLength',1.5e6,...

 'YLimits',[-1 1]);

dRG = noiseGate(...

 'SampleRate',fileReader.SampleRate,...

 'Threshold',-25,...

 'AttackTime',10e-3,...

 'ReleaseTime',20e-3,...

 'HoldTime',0);

visualize(dRG); %<---

while ~isDone(fileReader)

 signal = step(fileReader);

 noisySignal = signal + 0.0025*randn(frameLength,1);

 processedSignal = step(dRG,noisySignal);

 play(deviceWriter,processedSignal);

 step(scope,[noisySignal,processedSignal]);

end

release(fileReader);

release(deviceWriter);

release(scope);

release(dRG);

Add MIDI Controller

Many Audio System Toolbox System objects include methods that support MIDI controls.
This tutorial uses the configureMIDI method of the noiseGate System object to
synchronize your System object properties to MIDI controls.

Note: To use MIDI controls with System objects that do not have a configureMIDI
method, see “Musical Instrument Digital Interface (MIDI)”.

To control your noiseGate System object properties with a MIDI controller, connect the
MIDI device to your computer.

The configureMIDI method enables you to synchronize properties to MIDI controls
using a user interface or a script. This example synchronizes properties to a MIDI
controller using a user interface.

6 Real-Time Audio in MATLAB

6-10

Before calling your audio stream loop, call the configureMIDI method on your
noiseGate System object. When you run your script, it does not advance until you have
completed your configuration and closed the user interface. Once the user interface
opens:

1 Select a property to synchronize by choosing it from the drop-down menu.
2 Move a MIDI control.

The noiseGate property in the drop-down menu and the MIDI control you moved are
now synced. Repeat these steps for all properties you want to synchronize. Then click
OK.

While your audio is stream processing, use your MIDI controller to adjust the
noiseGate parameters in real time. In particular, toggle the MIDI control mapped to
the Threshold property to attenuate the additive Gaussian noise in the signal.

View Example Code

frameLength = 256;

fileReader = dsp.AudioFileReader(...

 'Counting-16-44p1-mono-15secs.wav',...

 'SamplesPerFrame',frameLength);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

scope = dsp.TimeScope(...

 'SampleRate',fileReader.SampleRate,...

 'TimeSpan',16,...

 'BufferLength',1.5e6,...

 'YLimits',[-1 1]);

dRG = noiseGate(...

 'SampleRate',fileReader.SampleRate,...

 'Threshold',-25,...

 'AttackTime',10e-3,...

 'ReleaseTime',20e-3,...

 'HoldTime',0);

visualize(dRG);

configureMIDI(dRG); %<---

while ~isDone(fileReader)

 signal = step(fileReader);

 noisySignal = signal + 0.0025*randn(frameLength,1);

 Real-Time Audio in MATLAB

6-11

 processedSignal = step(dRG,noisySignal);

 play(deviceWriter,processedSignal);

 step(scope,[noisySignal,processedSignal]);

end

release(fileReader);

release(deviceWriter);

release(scope);

release(dRG);

Add UDP

You can use the User Datagram Protocol (UDP) within MATLAB for connectionless
transmission, or to receive or transmit datagrams outside MATLAB. Possible
applications include using MATLAB to tune your audio processing algorithm while
playing and visualizing your audio in a third-party environment. See “Communicating
Between a DAW and MATLAB via UDP” for an example application of UDP
communication.

Quick Start Examples

Audio Stream from Device to Device

This example uses the audioDeviceReader and audioDeviceWriter System objects
to perform real-time I/O stream processing. The processing is limited to adding a gain.

%% Real-Time Audio Stream Processing

%

% The Audio System Toolbox provides real-time, low-latency processing of

% audio signals using the System objects audioDeviceReader and

% audioDeviceWriter.

%

% This example shows how to acquire an audio signal using your microphone,

% perform basic signal processing, and play back your processed

% signal.

%

%% Create input and output objects

deviceReader = audioDeviceReader;

deviceWriter = audioDeviceWriter('SampleRate',deviceReader.SampleRate);

%% Specify an audio processing algorithm

% For simplicity, only add gain.

6 Real-Time Audio in MATLAB

6-12

process = @(x) x.*5;

%% Code for stream processing

% Place the following steps in a while loop for continuous stream

% processing:

% 1. Use the record method of your audio device reader to acquire one input frame.

% 2. Perform your signal processing operation on the input frame.

% 3. Use the play method of your audio device writer to listen to your processed frame.

disp('Begin Signal Input...')

tic

while toc<5

 mySignal = record(deviceReader);

 myProcessedSignal = process(mySignal);

 play(deviceWriter, myProcessedSignal);

end

disp('End Signal Input')

release(deviceReader)

release(deviceWriter)

Audio Stream from Device to File

This example uses the audioDeviceReader and dsp.AudioFileWriter System
objects to perform real-time I/O stream processing. The processing is limited to adding a
gain.

%% Real-Time Audio Stream Processing

%

% The Audio System Toolbox provides real-time, low-latency processing of

% audio signals using the System objects audioDeviceReader and

% dsp.audioFileWriter.

%

% This example shows how to acquire an audio signal using your microphone,

% perform basic signal processing, and write your signal to a file.

%

%% Construct input and output objects

% Use the sample rate of your input as the sample rate of your output.

deviceReader = audioDeviceReader;

fileWriter = dsp.AudioFileWriter('SampleRate',deviceReader.SampleRate);

%% Specify an audio procesing algorithm

% For simplicity, only add gain.

process = @(x) x.*5;

 Real-Time Audio in MATLAB

6-13

%% Code for stream processing

% Place the following steps in a while loop for continuous stream

% processing:

% 1. Use the record method of your deviceReader to acquire one input frame.

% 2. Perform your signal processing operation on the input frame.

% 3. Use the step method of fileWriter to write your processed frame to a file.

% Note: The file is named 'output.wav' and written to current folder by default.

disp('Begin Signal Input...')

tic

while toc<5

 mySignal = record(deviceReader);

 myProcessedSignal = process(mySignal);

 step(fileWriter, myProcessedSignal);

end

disp('End Signal Input')

release(deviceReader);

release(fileWriter);

Audio Stream from File to Device

This example uses the dsp.AudioFileReader and audioDeviceWriter System
objects to perform real-time I/O stream processing. The processing is limited to adding a
gain.

%% Real-Time Audio Stream Processing

%

% The Audio System Toolbox provides real-time, low-latency processing of

% audio signals using the System objects dsp.audioFileReader and

% audioDeviceWriter.

%

% This example shows how to acquire an audio signal using dsp.AudioFileReader,

% perform basic signal processing, and play your processed

% signal using audioDeviceWriter.

%

%% Construct input and output objects

% Use the sample rate of your input as the sample rate of your output.

fileReader = dsp.AudioFileReader('speech_dft.mp3');

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

%% Specify an audio processing algorithm

% For simplicity, only add gain.

6 Real-Time Audio in MATLAB

6-14

process = @(x) x.*5;

%% Code for stream processing

% Place the following steps in a while loop for continuous stream

% processing until dsp.AudioFileReader is done reading the file:

% 1. Use the step method of your audio file reader to read one input frame.

% 2. Perform your signal processing operation on the input frame.

% 3. Use the play method of your audio device writer to listen to your processed frame.

while ~isDone(fileReader)

 mySignal = step(fileReader);

 myProcessedSignal = process(mySignal);

 play(deviceWriter, myProcessedSignal);

end

release(fileReader);

release(deviceWriter);

More About
• “Real-Time Audio in Simulink” on page 8-2
• “Audio I/O: Buffering, Latency, and Throughput” on page 4-2
• “Musical Instrument Digital Interface (MIDI)”
• “Use the Audio Test Bench”

7

Design an Audio Plugin

7 Design an Audio Plugin

7-2

Design an Audio Plugin

In this section...

“Role of Audio Plugins in Audio System Toolbox” on page 7-2
“Defining Audio Plugins in the MATLAB Environment” on page 7-2
“Design a Basic Plugin” on page 7-3
“Design a System Object Plugin” on page 7-10
“Quick Start Basic Plugin” on page 7-12
“Quick Start Basic Source Plugin” on page 7-14
“Quick Start System Object Plugin” on page 7-15
“Quick Start System Object Source Plugin” on page 7-17
“Audio System Toolbox Extended Terminology” on page 7-19

Role of Audio Plugins in Audio System Toolbox

The audio plugin is the suggested paradigm for developing your audio processing
algorithm in Audio System Toolbox. Once designed, the audio plugin can be validated,
generated, and deployed to a third-party digital audio workstation (DAW).

Additional benefits of developing your audio processing as an audio plugin include:

• Rapid prototyping using the Audio Test Bench
• Integration with MIDI devices
• Code reuse

Some understanding of object-oriented programming (OOP) in the MATLAB
environment is required to optimize your use of the audio plugin paradigm. If you are
unfamiliar with these concepts, see “Why Use Object-Oriented Design”.

For a review of audio plugins as defined outside the MATLAB environment, see “What
Are DAWs, Audio Plugins, and MIDI Controllers?” on page 5-2

Defining Audio Plugins in the MATLAB Environment

In the MATLAB environment, an audio plugin refers to a class derived from the
audioPlugin base class or the audioPluginSource base class.

 Design an Audio Plugin

7-3

Audio System Toolbox documentation uses the following terminology:

• A plugin is any audio plugin that derives from the audioPlugin class or the
audioPluginSource class.

• A basic plugin is an audio plugin that derives from the audioPlugin class.
• A basic source plugin is an audio plugin that derives from the audioPluginSource

class.

Audio plugins can also inherit from matlab.System. Any object that derives from
matlab.System is referred to as a System object. Deriving from matlab.System allows
for additional functionality, including Simulink integration. However, manipulating
System objects requires a more advanced understanding of OOP in the MATLAB
environment.

See “Audio System Toolbox Extended Terminology” on page 7-19 for a detailed
visualization of inheritance and terminology.

Design a Basic Plugin

In this example, you create a simple plugin, and then gradually increase complexity.
Your final plugin uses a circular buffer to add an echo effect to an input audio signal. For
additional considerations for generating a plugin, see “Export a MATLAB Plugin to a
DAW” on page 2-2.

1 Define a Basic Plugin Class. Begin with a simple plugin that copies input to
output without modification.

7 Design an Audio Plugin

7-4

classdef myBasicPlugin < audioPlugin

 methods

 function out = process(~, in)

 out = in;

 end

 end

end

myBasicPlugin illustrates the two minimum requirements for audio plugin classes.
They must:

• Inherit from audioPlugin class
• Have a process method

The process method contains the primary frame-based audio processing algorithm.
It is called in an audio stream loop to process an audio signal over time.

By default, both the input to and output from the process method have two
channels (columns). The number of input rows (frame size) passed to process is
determined by the environment in which it is run. The output must have the same
number of rows as the input.

2 Add a Plugin Property. A property can store information in an object. Add a
property, Gain, to your class definition. Modify your process method to multiply
the input by the value specified by the Gain property.

View Code

classdef myBasicPlugin < audioPlugin

 properties %<---

 Gain = 1.5; %<---

 end %<---

 methods

 function out = process(plugin, in) %<---

 out = in*plugin.Gain; %<---

 end

 end

end

The first argument of the process method has changed from ~ to plugin. The first
argument of process is reserved for the audio plugin object. If a variable is specified

 Design an Audio Plugin

7-5

as the first argument of process, then all myBasicPlugin properties are accessible
in the process method.

3 Add a Plugin Parameter. Plugin parameters are the interface between
plugin properties and the plugin user. The definition of this interface is handled
by audioPluginInterface, which holds audioPluginParameter objects.
To associate a plugin property to a parameter, specify the first argument of
audioPluginParameter as a string entered exactly as the property you want to
associate. The remaining arguments of audioPluginParameter specify optional
additional parameter attributes.

In this example, you specify a mapping between the value of the parameter and
its associated property, as well as the parameter display name as it appears on
a plugin dialog box. By specifying 'Mapping' as {'lin',0,3}, you set a linear
mapping between the Gain property and the associated user-facing parameter, with
an allowable range for the property between 0 and 3.

View Code

classdef myBasicPlugin < audioPlugin

 properties

 Gain = 1.5;

 end

 properties (Constant)

 PluginInterface = audioPluginInterface(...

 audioPluginParameter('Gain',... %<---

 'DisplayName','Echo Gain',... %<---

 'Mapping',{'lin',0,3})) %<---

 end

 methods

 function out = process(plugin, in)

 out = in*plugin.Gain;

 end

 end

end

4 Add Private Properties. Add properties to store a circular buffer, a buffer index,
and the N-sample delay of your echo. Because the plugin user does not need to see
them, make CircularBuffer, BufferIndex, and NSamples private properties. It
is best practice to initialize properties to their type and size.

View Code

classdef myBasicPlugin < audioPlugin

7 Design an Audio Plugin

7-6

 properties

 Gain = 1.5;

 end

 properties (Access=private) %<---

 CircularBuffer = zeros(192001,2); %<---

 BufferIndex = 1; %<---

 NSamples = 0; %<---

 end %<---

 properties (Constant)

 PluginInterface = audioPluginInterface(...

 audioPluginParameter('Gain',...

 'DisplayName','Echo Gain',...

 'Mapping',{'lin',0,3}))

 end

 methods

 function out = process(plugin, in)

 out = in*plugin.Gain;

 end

 end

end

5 Add an Echo. In the process method, write to and read from your circular buffer
to create an output that consists of your input and a gain-adjusted echo. The first
line of the process method initializes the output to the size of the input. It is best
practice to initialize your output to avoid errors when generating plugins.

View Code

classdef myBasicPlugin < audioPlugin

 properties

 Gain = 1.5;

 end

 properties (Access=private)

 CircularBuffer = zeros(192001,2);

 BufferIndex = 1;

 NSamples = 0;

 end

 properties (Constant)

 PluginInterface = audioPluginInterface(...

 audioPluginParameter('Gain',...

 'DisplayName','Echo Gain',...

 'Mapping',{'lin',0,3}))

 end

 methods

 function out = process(plugin, in)

 Design an Audio Plugin

7-7

 out = zeros(size(in)); %<---

 writeIndex = plugin.BufferIndex; %<---

 readIndex = writeIndex - plugin.NSamples; %<---

 if readIndex <= 0 %<---

 readIndex = readIndex + 192001; %<---

 end %<---

 %<---

 for i = 1:size(in,1) %<---

 plugin.CircularBuffer(writeIndex,:) = in(i,:); %<---

 %<---

 echo = plugin.CircularBuffer(readIndex,:); %<---

 out(i,:) = in(i,:) + echo * plugin.Gain; %<---

 %<---

 writeIndex = writeIndex + 1; %<---

 if writeIndex > 192001 %<---

 writeIndex = 1; %<---

 end %<---

 %<---

 readIndex = readIndex + 1; %<---

 if readIndex > 192001 %<---

 readIndex = 1; %<---

 end %<---

 end %<---

 plugin.BufferIndex = writeIndex; %<---

 end

 end

end

6 Make the Echo Delay Tunable. To allow the user to modify the NSamples delay
of the echo, define a public property, Delay, and associate it with a parameter. Use
the default audioPluginParameter mapping to allow the user to set the echo delay
between 0 and 1 seconds.

Add a set method that listens for changes to the Delay property. Use the
getSampleRate method of the audioPlugin base class to return the environment
sample rate. Approximate a delay specified in seconds as a number of samples,
NSamples. If the plugin user modifies the Delay property, set.Delay is called and
the delay in samples (NSamples) is calculated. If the environment sample rate is
above 192,000 Hz, the plugin does not perform as expected.

View Code

classdef myBasicPlugin < audioPlugin

7 Design an Audio Plugin

7-8

 properties

 Gain = 1.5;

 Delay = 0.5; %<---

 end

 properties (Access=private)

 CircularBuffer = zeros(192001,2);

 BufferIndex = 1;

 NSamples = 0;

 end

 properties (Constant)

 PluginInterface = audioPluginInterface(...

 audioPluginParameter('Gain',...

 'DisplayName','Echo Gain',...

 'Mapping',{'lin',0,3}),... %<---

 audioPluginParameter('Delay',... %<---

 'DisplayName','Echo Delay',... %<---

 'Label','seconds')) %<---

 end

 methods

 function out = process(plugin, in)

 out = zeros(size(in));

 writeIndex = plugin.BufferIndex;

 readIndex = writeIndex - plugin.NSamples;

 if readIndex <= 0

 readIndex = readIndex + 192001;

 end

 for i = 1:size(in,1)

 plugin.CircularBuffer(writeIndex,:) = in(i,:);

 echo = plugin.CircularBuffer(readIndex,:);

 out(i,:) = in(i,:) + echo*plugin.Gain;

 writeIndex = writeIndex + 1;

 if writeIndex > 192001

 writeIndex = 1;

 end

 readIndex = readIndex + 1;

 if readIndex > 192001

 readIndex = 1;

 end

 end

 plugin.BufferIndex = writeIndex;

 Design an Audio Plugin

7-9

 end

 function set.Delay(plugin, val) %<---

 plugin.Delay = val; %<---

 plugin.NSamples = floor(getSampleRate(plugin)*val); %<---

 end %<---

 end

end

7 Add a Reset Function. The reset method of a plugin contains instructions
to reset the plugin between uses or when the environment sample rate changes.
Because NSamples depends on the environment sample rate, update its value in the
reset method.

View Code

classdef myBasicPlugin < audioPlugin

 properties

 Gain = 1.5;

 Delay = 0.5;

 end

 properties (Access=private)

 CircularBuffer = zeros(192001,2);

 BufferIndex = 1;

 NSamples = 0;

 end

 properties (Constant)

 PluginInterface = audioPluginInterface(...

 audioPluginParameter('Gain',...

 'DisplayName','Echo Gain',...

 'Mapping',{'lin',0,3}),...

 audioPluginParameter('Delay',...

 'DisplayName','Echo',...

 'Label','seconds'))

 end

 methods

 function out = process(plugin, in)

 out = zeros(size(in));

 writeIndex = plugin.BufferIndex;

 readIndex = writeIndex - plugin.NSamples;

 if readIndex <= 0

 readIndex = readIndex + 192001;

 end

 for i = 1:size(in,1)

 plugin.CircularBuffer(writeIndex,:) = in(i,:);

7 Design an Audio Plugin

7-10

 echo = plugin.CircularBuffer(readIndex,:);

 out(i,:) = in(i,:) + echo*plugin.Gain;

 writeIndex = writeIndex + 1;

 if writeIndex > 192001

 writeIndex = 1;

 end

 readIndex = readIndex + 1;

 if readIndex > 192001

 readIndex = 1;

 end

 end

 plugin.BufferIndex = writeIndex;

 end

 function set.Delay(plugin, val)

 plugin.Delay = val;

 plugin.NSamples = floor(getSampleRate(plugin)*val);

 end

 function reset(plugin) %<---

 plugin.CircularBuffer = zeros(192001,2); %<---

 plugin.NSamples = floor(getSampleRate(plugin)*plugin.Delay);%<---

 end %<---

 end

end

Design a System Object Plugin

You can map the basic plugin to a System object plugin. Note the differences between the
two plugin types:

• A System object plugin inherits from both the audioPlugin base class and the
matlab.System base class, not just audioPlugin base class.

• The primary audio processing method of a System object plugin is named stepImpl,
not process.

• The reset method of a System object is named resetImpl, not reset.
• Both resetImpl and stepImpl must be defined as protected methods.
• System objects enable alternatives to the set method. For more information, see

processTunedPropertiesImpl.

 Design an Audio Plugin

7-11

System Object Plugin

classdef mySystemObjectPlugin < audioPlugin & matlab.System

 properties

 Gain = 1.5;

 Delay = 0.5;

 end

 properties (Access=private)

 CircularBuffer = zeros(192001,2);

 BufferIndex = 1;

 NSamples = 0;

 end

 properties (Constant)

 PluginInterface = audioPluginInterface(...

 audioPluginParameter('Gain',...

 'DisplayName','Echo Gain',...

 'Mapping',{'lin',0,3}),...

 audioPluginParameter('Delay',...

 'DisplayName','Echo',...

 'Label','seconds'))

 end

 methods (Access=protected)

 function out = stepImpl(plugin, in)

 out = zeros(size(in));

 writeIndex = plugin.BufferIndex;

 readIndex = writeIndex - plugin.NSamples;

 if readIndex <= 0

 readIndex = readIndex + 192001;

 end

 for i = 1:size(in,1)

 plugin.CircularBuffer(writeIndex,:) = in(i,:);

 echo = plugin.CircularBuffer(readIndex,:);

 out(i,:) = in(i,:) + echo * plugin.Gain;

 writeIndex = writeIndex + 1;

 if writeIndex > 192001

 writeIndex = 1;

 end

 readIndex = readIndex + 1;

 if readIndex > 192001

 readIndex = 1;

7 Design an Audio Plugin

7-12

 end

 end

 plugin.BufferIndex = writeIndex;

 end

 function resetImpl(plugin)

 plugin.CircularBuffer = zeros(192001,2);

 plugin.NSamples = floor(getSampleRate(plugin) * plugin.Delay);

 end

 end

 methods

 function set.Delay(plugin, val)

 plugin.Delay = val;

 plugin.NSamples = floor(getSampleRate(plugin) * val);

 end

 end

end

Quick Start Basic Plugin

Template

classdef myBasicPlugin < audioPlugin

 % myBasicPlugin is a template basic plugin. Use this template to create

 % your own basic plugin.

 properties

 % Use this section to initialize properties that the end-user interacts

 % with.

 end

 properties (Access=private)

 % Use this section to initialize properties that the end-user does not

 % interact with directly.

 end

 properties (Constant)

 % This section contains instructions to build your audio plugin

 % interface. The end-user uses the interface to adjust tunable

 % parameters. Use audioPluginParameter to associate a public property

 % with a tunable parameter.

 end

 methods

 function out = process(plugin, in)

 % This section contains instructions to process the input audio

 % signal. Use plugin.MyProperty to access a property of your

 % plugin.

 Design an Audio Plugin

7-13

 end

 function reset(plugin)

 % This section contains instructions to reset the plugin between

 % uses or if the environment sample rate changes.

 end

 function set.MyProperty(plugin, val)

 % This section contains instructions to execute if the

 % specified property is modified. Properties associated with

 % parameters are updated automatically. Use the set method to

 % execute more complicated instructions.

 end

 end

end

Annotated Example

This basic plugin enables the user to tune a damped applied gain. Click here to open the
file.

7 Design an Audio Plugin

7-14

Quick Start Basic Source Plugin

Template

classdef myBasicSourcePlugin < audioPluginSource

 % myBasicSourcePlugin is a template for a basic source plugin. Use this

 % template to create your own basic source plugin.

 properties

 % Use this section to initialize properties that the end-user

 % interacts with.

 end

 properties (Access=private)

 % Use this section to initialize properties that the end-user does

 % not interact with directly.

 end

 properties (Constant)

 % This section contains instructions to build your audio plugin

 % interface. The end-user uses the interface to adjust tunable

 % parameters. Use audioPluginParameter to associate a public

 % property with a tunable parameter.

 end

 methods

 function out = process(plugin)

 % This section contains instructions to produce the output

 % audio signal. Use plugin.MyProperty to access a property of

 % your plugin. Use getSamplesPerFrame(plugin) to get the frame

 % size used by the environment.

 end

 function reset(plugin)

 % This section contains instructions to reset the plugin

 % between uses, or when the environment sample rate changes.

 end

 function set.MyProperty(plugin, val)

 % This section contains instructions to execute if the

 % specified property is modified. Properties associated with

 % parameters are updated automatically. Use the set method to

 % execute more complicated instructions.

 end

 end

end

 Design an Audio Plugin

7-15

Annotated Example

This basic source plugin enables the user to tune the damped gain of a noise signal. Click
here to open the file.

Quick Start System Object Plugin

Template

classdef mySystemObjectPlugin < audioPlugin & matlab.System

 % mySystemObjectPlugin is a template for System object plugins.

 % Use this template to create your own System object plugin.

 properties

 % Use this section to initialize properties that the end-user interacts

 % with.

7 Design an Audio Plugin

7-16

 end

 properties (Access=private)

 % Use this section to initialize properties that the end-user does not

 % interact with directly.

 end

 properties (Constant)

 % This section contains instructions to build your audio plugin

 % interface. The end-user uses the interface to adjust tunable

 % parameters. Use audioPluginParameter to associate a public property

 % with a tunable parameter.

 end

 methods (Access=protected)

 function out = stepImpl(plugin)

 % This section contains instructions to process the input audio

 % signal. Use plugin.MyProperty to access a property of your

 % plugin.

 end

 function resetImpl(plugin)

 % This section contains instructions to reset the plugin between

 % uses or if the environment sample rate changes.

 end

 end

 methods

 function set.MyProperty(plugin, val)

 % This section contains instructions to execute if the specified

 % property is modified. Properties associated with parameters are updated

 % automatically. Use the set method to execute more complicated

 % instructions.

 end

 end

end

Annotated Example

This System object plugin enables the user to tune a damped applied gain. Click here to
open the file.

 Design an Audio Plugin

7-17

Quick Start System Object Source Plugin

Template

classdef mySystemObjectSourcePlugin < audioPluginSource & matlab.System

 % mySystemObjectPlugin is a template for System object source plugins.

 % Use the template to create your own System object source plugin.

 properties

 % Use this section to initialize properties that the end-user

 % interacts with.

 end

 properties (Access=private)

 % Use this section to initialize properties that the end-user does

 % not interact with directly.

 end

7 Design an Audio Plugin

7-18

 properties (Constant)

 % This section contains instructions to build your audio plugin

 % interface. The end-user uses the interface to adjust tunable

 % parameters. Use audioPluginParameter to associate a public

 % property with a tunable parameter.

 end

 methods (Access=protected)

 function out = stepImpl(plugin)

 % This section contains instructions to produce the output

 % audio signal. Use plugin.MyProperty to access a property of

 % your plugin. Use getSamplesPerFrame(plugin) to get the frame

 % size used by the environment.

 end

 function resetImpl(plugin)

 % This section contains instructions to reset the plugin

 % between uses or if the environment sample rate changes.

 end

 end

 methods

 function set.MyProperty(plugin, val)

 % This section contains instructions to execute if the

 % specified property is modified. Properties associated with

 % parameters are updated automatically. Use the set method to

 % execute more complicated instructions.

 end

 end

end

Annotated Example

This System object source plugin enables the user to tune the damped gain of a noise
signal. Click here to open the file.

 Design an Audio Plugin

7-19

Audio System Toolbox Extended Terminology

In the MATLAB environment, an audio plugin refers to a class derived from the
audioPlugin base class or the audioPluginSource base class. Audio plugins can also
inherit from matlab.System. Any object that derives from matlab.System is referred
to as a System object. Deriving from matlab.System allows for additional functionality,
including Simulink integration. However, manipulating System objects requires a more
advanced understanding of OOP in the MATLAB environment.

7 Design an Audio Plugin

7-20

More About
• “Convert MATLAB Code to an Audio Plugin” on page 9-2
• “Convert Audio Plugin System Objects to Simulink Blocks” on page 10-2
• “What Are DAWs, Audio Plugins, and MIDI Controllers?” on page 5-2
• “Export a MATLAB Plugin to a DAW” on page 2-2

8

Real-Time Audio in Simulink

8 Real-Time Audio in Simulink

8-2

Real-Time Audio in Simulink

In this section...

“Create Model Using Audio System Toolbox Simulink Model Templates” on page
8-2
“Add Audio System Toolbox Blocks to Model” on page 8-3
“Recommended Settings for Audio Signal Processing” on page 8-7

Create Model Using Audio System Toolbox Simulink Model Templates

The Audio System Toolbox Simulink model templates let you automatically configure
the Simulink environment for audio signal processing. See “Recommended Settings for
Audio Signal Processing” on page 8-7. These templates enable reuse of settings,
including configuration parameters. For more information on Simulink model templates,
see “Create a Model” in the Simulink documentation.

To create a model using the Audio System Toolbox Simulink model templates:

1 Open the Simulink Start Page by typing simulink at the MATLAB command
prompt.

2 Under Audio System Toolbox, click the model template you want, and then click

 .

 Real-Time Audio in Simulink

8-3

The two Audio System Toolbox Simulink model templates are:

• Audio System – Creates a blank model configured with settings recommended for
Audio System Toolbox.

• Basic Audio Player – Creates an audio model configured with settings
recommended for Audio System Toolbox. This model uses a From Multimedia
File block to read multimedia files, and a Audio Device Writer block to send
sound data to the default audio device of your computer. Adjust the model as
needed to model your audio system. For example, to process live audio input,
replace the From Multimedia File block with an Audio Device Reader
block.

Add Audio System Toolbox Blocks to Model

1 Create a model using an Audio System Toolbox template.
2 Open the Simulink Library Browser and select Audio System Toolbox.

8 Real-Time Audio in Simulink

8-4

3 The Audio System Toolbox Block Library has five categories: Dynamic Range
Control, Effects, Filters, Sinks, and Sources. Select a block from one of the
categories, and add it to your model.

4 In this example, a Compressor has been added to the model by dragging and
dropping from the Simulink Library Browser.

5 To run your model, click the button.

 Real-Time Audio in Simulink

8-5

6 Open a block parameter user interface by double-clicking the block. You can modify
parameters while the model runs. For example, if you added a Compressor block,
you can adjust the Threshold (dB) dial to compress the dynamic range of your
audio signal.

8 Real-Time Audio in Simulink

8-6

7 Running a model in the Simulink environment does not save the model. Save your
model by clicking the button.

 Real-Time Audio in Simulink

8-7

Recommended Settings for Audio Signal Processing

Configuration Parameter Setting

SingleTaskRateTransMsg error

multiTaskRateTransMsg error

Solver fixedstepdiscrete

SolverMode SingleTasking

StartTime 0.0

StopTime inf

FixedStep auto

SaveTime off

SaveOutput off

AlgebraicLoopMsg error

SignalLogging off

FrameProcessingCompatibilityMsg error

More About
• “Real-Time Audio in MATLAB” on page 6-2
• “Convert Audio Plugin System Objects to Simulink Blocks” on page 10-2

9

Convert MATLAB Code to an Audio
Plugin

9 Convert MATLAB Code to an Audio Plugin

9-2

Convert MATLAB Code to an Audio Plugin
Abstract

Tutorial on packaging stream audio processing algorithms as valid plugin objects.

Audio System Toolbox supports several approaches for the development of audio
processing algorithms. Two common approaches include procedural programming using
MATLAB scripts and object-oriented programming using MATLAB classes. The audio
plugin class is the suggested paradigm for developing your audio processing algorithm
in Audio System Toolbox. See “Design an Audio Plugin” on page 7-2 for a tutorial on the
structure, benefits, and uses of audio plugins.

This tutorial presents an existing algorithm developed as a MATLAB script, and
then walks through the steps to convert the script to an audio plugin class. Use this
tutorial to understand the relationship between procedural programming and object-
oriented programming. You can also use this tutorial as a template to convert any audio
processing you developed as MATLAB scripts to the audio plugin paradigm.

Inspect Existing MATLAB Script

The MATLAB script has these sections:

A Variable Initialization. Variables are initialized with known values, including
the number of samples per frame (frameSize) for frame-based stream processing.

B Object Construction.

• Two audioOscillator System objects — Construct to create time-varying gain
control signals.

• dsp.AudioFileReader System object — Construct to read an audio signal from a
file.

• audioDeviceWriter System object — Construct to write an audio signal to your
default audio device.

C Audio Stream Loop. Mixes stereo channels into a mono signal. The mono signal
is used to create a new stereo signal. Each channel of the new stereo signal oscillates
in applied gain between 0 and 2, with a respective 90-degree phase shift.

View Code

%% Section A: Variable Initialization

 Convert MATLAB Code to an Audio Plugin

9-3

% Specify frequency of gain oscillation.

Frequency = 1;

% Determine sample rate of audio file (input audio signal).

fileInfo = audioinfo(...

 'RockGuitar-16-44p1-stereo-72secs.wav');

sampleRate = fileInfo.SampleRate;

% Specify size of frame to read in from audio file.

frameSize = 256;

%% Section B: Object Construction

Sine = audioOscillator(...

 'DCOffset',1,...

 'SamplesPerFrame',frameSize,...

 'Frequency',Frequency,...

 'SampleRate',sampleRate);

Cosine = audioOscillator(...

 'DCOffset',1,...

 'PhaseOffset',0.5,...

 'Frequency',Frequency,...

 'SamplesPerFrame',frameSize,...

 'SampleRate',sampleRate);

fileReader = dsp.AudioFileReader(...

 'Filename',fileInfo.Filename,...

 'SamplesPerFrame',frameSize);

deviceWriter = audioDeviceWriter(...

 'SampleRate',fileReader.SampleRate);

%% Section C: Audio Stream Loop

while ~isDone(fileReader)

 % Read in one frame of audio signal from file.

 in = step(fileReader);

 % Mix stereo input to mono.

 mono = 0.5*sum(in,2);

 % Get current frame of Sine and Cosine gain functions.

9 Convert MATLAB Code to an Audio Plugin

9-4

 gainLeft = step(Sine);

 gainRight = step(Cosine);

 % Process signal by multiplying by variable gain matrix.

 out = [mono,mono] .* [gainLeft,gainRight];

 % Write one frame of audio signal to device.

 play(deviceWriter,out);

end

Convert MATLAB Script to Plugin Class

This tutorial converts a MATLAB script to an audio plugin class in six steps. You
begin by creating a skeleton of a basic audio plugin class, and then map sections of the
MATLAB script to the audio plugin class.

For an overview of how a MATLAB script is converted to a plugin class, inspect the script
to plugin visual mapping. To perform this conversion, walk through the example for
explanations and step-by-step instructions.

 Convert MATLAB Code to an Audio Plugin

9-5

1. Create Skeleton of Audio Plugin Class

Begin with the basic skeleton of an audio plugin class. This skeleton is not the minimum
required, but a common minimum to create an interesting audio plugin. See“Design an
Audio Plugin” on page 7-2 for the minimum requirements to create a basic audio plugin.

9 Convert MATLAB Code to an Audio Plugin

9-6

View Code

classdef gainOscillator < audioPlugin

 % gainOscillator Phase-shifted stereo gain oscillation.

 % The process method mixes stereo channels into a mono signal. The

 % mono signal is used to create a stereo signal, with each channel

 % oscillating in gain between zero and two, with a respective 90

 % degree phase shift.

 properties

 % Use this section to initialize properties that the end-user

 % interacts with.

 end

 properties (Access=private)

 % Use this section to initialize properties that the end-user does

 % not interact with directly.

 end

 properties (Constant)

 % This section contains instructions to build your audio plugin

 % interface. The end-user uses the interface to adjust tunable

 % parameters. Use audioPluginParameter to associate a public

 % property with a tunable parameter.

 end

 methods

 function out = process(plugin, in)

 % This section contains instructions to process the input audio

 % signal. Use plugin.MyProperty to access a property of your

 % plugin.

 end

 function reset(plugin)

 % This section contains instructions to reset the plugin

 % between uses or if the environment sample rate changes.

 end

 end

end

2. Map Script Variable Initialization to Plugin Properties

Properties allow a plugin to store information across sections of the plugin class
definition. If a property has access set to private, the property is not accessible to the end
user of a plugin. Variable initialization in a script maps to plugin properties.

• A valid plugin must allow input to the process method to have a variable frame size.
Frame size is determined for each input frame in the process method of the plugin.

 Convert MATLAB Code to an Audio Plugin

9-7

Because frame size is used only in the process method, you do not declare it in the
properties section.

• A valid audio plugin must allow input to the process method to have a variable
sample rate. The reset method of a plugin is called when the environment changes
the sample rate. Determine the sample rate in the reset method using the
getSampleRate method inherited from the audioPlugin base class.

• The objects used by a plugin must be declared as properties to be used in multiple
sections of the plugin. However, the constructor method of a plugin performs object
construction.

View Code

classdef gainOscillator < audioPlugin

 properties

 Frequency = 1; %<---

 end

 properties(Access = private)

 Sine %<---

 Cosine %<---

 end

 properties (Constant)

 end

 methods

 function out = process(plugin,in)

 end

 function reset(plugin)

 end

 end

end

3. Map Script Object Construction to Plugin Constructor Method

Add a constructor method to the methods section of your audio plugin. The constructor
method of a plugin has the form:

function plugin = myPluginClassName

 % Instructions to construct plugin object.

end

If your plugin uses objects, construct them when the plugin is constructed. Set
nontunable properties of objects used by your plugin during construction.

In this example, you construct the Sine and Cosine objects in the constructor method of
the plugin.

9 Convert MATLAB Code to an Audio Plugin

9-8

View Code

classdef gainOscillator < audioPlugin

 properties

 Frequency = 1;

 end

 properties(Access = private)

 Sine

 Cosine

 end

 properties (Constant)

 end

 methods

 function plugin = gainOscillator %<---

 plugin.Sine = audioOscillator(... %<---

 'DCOffset',1); %<---

 plugin.Cosine = audioOscillator(... %<---

 'DCOffset',1,... %<---

 'PhaseOffset',0.5); %<---

 end %<---

 function out = process(plugin,in)

 end

 function reset(plugin)

 end

 end

end

4. Add Reset Method

The reset method of a plugin is called every time a new session is started with the
plugin, or when the environment changes sample rate. Use the reset method to update
the SampleRate property of your Sine and Cosine objects. To query the sample rate,
use the getSampleRate base class method.

View Code

classdef gainOscillator < audioPlugin

 properties

 Frequency = 1;

 end

 properties(Access = private)

 Sine

 Cosine

 end

 Convert MATLAB Code to an Audio Plugin

9-9

 properties (Constant)

 end

 methods

 function plugin = gainOscillator

 plugin.Sine = audioOscillator(...

 'DCOffset',1);

 plugin.Cosine = audioOscillator(...

 'DCOffset',1,...

 'PhaseOffset',0.5);

 end

 function out = process(plugin,in)

 end

 function reset(plugin)

 plugin.Sine.SampleRate = getSampleRate(plugin); %<---

 plugin.Cosine.SampleRate = getSampleRate(plugin); %<---

 end

 end

end

5. Map Script Audio Stream Loop to Plugin Process Method

The contents of the audio stream loop in a script maps to the process method of an
audio plugin, with these differences:

• A valid audio plugin must accept a variable frame size, so frame size is calculated for
every call to the process method. Because frame size is variable, any processing that
relies on frame size must update when input frame size changes.

• The environment handles the input and output to the process method.

View Code

classdef gainOscillator < audioPlugin

 properties

 Frequency = 1;

 end

 properties(Access = private)

 Sine

 Cosine

 end

 properties (Constant)

 end

 methods

 function plugin = gainOscillator

 plugin.Sine = audioOscillator(...

9 Convert MATLAB Code to an Audio Plugin

9-10

 'DCOffset',1);

 plugin.Cosine = audioOscillator(...

 'DCOffset',1,...

 'PhaseOffset',0.5);

 end

 function out = process(plugin,in)

 frameSize = size(in,1); %<---

 plugin.Sine.SamplesPerFrame = frameSize; %<---

 plugin.Cosine.SamplesPerFrame = frameSize; %<---

 mono = 0.5*sum(in,2); %<---

 gainLeft = step(plugin.sine); %<---

 gainRight = step(plugin.cosine); %<---

 out = [mono,mono].*[gainLeft,gainRight]; %<---

 end

 function reset(plugin)

 plugin.Sine.SampleRate = getSampleRate(plugin);

 plugin.Cosine.SampleRate = getSampleRate(plugin);

 end

 end

end

6. Add Plugin Interface

The plugin interface lets users view the plugin and tune its properties. Specify
PluginInterface as an audioPluginInterface object that contains an
audioPluginParameter object. The first argument of audioPluginParameter is the
property you want to synchronize with a tunable parameter. Choose the name to display,
label the units, and set the parameter range. This example uses 0.1 to 10 as a reasonable
range for the Frequency property. Write code so that during each call to the process
method, your Sine and Cosine objects are updated with the current frequency value.

View Code

classdef gainOscillator < audioPlugin

 properties

 Frequency = 1;

 end

 properties(Access = private)

 Sine

 Cosine

 end

 properties (Constant)

 Convert MATLAB Code to an Audio Plugin

9-11

 PluginInterface = audioPluginInterface(... %<---

 audioPluginParameter('Frequency',... %<---

 'DisplayName','Oscillation Frequency',... %<---

 'Label','Hz',... %<---

 'Mapping',{'lin',0.01,10})) %<---

 end

 methods

 function plugin = gainOscillator

 plugin.Sine = audioOscillator(...

 'DCOffset',1);

 plugin.Cosine = audioOscillator(...

 'DCOffset',1,...

 'PhaseOffset',0.5);

 end

 function out = process(plugin,in)

 frameSize = size(in,1);

 plugin.Sine.Frequency = plugin.Frequency; %<---

 plugin.Cosine.Frequency = plugin.Frequency; %<---

 plugin.Sine.SamplesPerFrame = frameSize;

 plugin.Cosine.SamplesPerFrame = frameSize;

 mono = 0.5*sum(in,2);

 gainLeft = step(plugin.Sine);

 gainRight = step(plugin.Cosine);

 out = [mono,mono].*[gainLeft,gainRight];

 end

 function reset(plugin)

 plugin.Sine.SampleRate = getSampleRate(plugin);

 plugin.Cosine.SampleRate = getSampleRate(plugin);

 end

 end

end

Once your audio plugin class definition is complete:

1 Save your plugin class definition file.
2 Validate your plugin using validateAudioPlugin.
3 Prototype it using Audio Test Bench.
4 Generate is using generateAudioPlugin.

9 Convert MATLAB Code to an Audio Plugin

9-12

More About
• “Design an Audio Plugin” on page 7-2
• “Convert Audio Plugin System Objects to Simulink Blocks” on page 10-2
• “Real-Time Audio in MATLAB” on page 6-2
• “What Are DAWs, Audio Plugins, and MIDI Controllers?” on page 5-2
• “Export a MATLAB Plugin to a DAW” on page 2-2

10

Convert Audio Plugin System Objects
to Simulink Blocks

10 Convert Audio Plugin System Objects to Simulink Blocks

10-2

Convert Audio Plugin System Objects to Simulink Blocks

You can convert System object audio plugins to blocks for real-time parameter tuning in
Simulink. In this tutorial, you create a model that uses the DampedVolumeController
audio plugin example. Use this workflow to convert your own System object plugins
to Simulink blocks, or to convert any of the System object plugins found in the “Audio
Plugin Example Gallery”.

Open the Basic Audio Player Template in Simulink

On the Simulink Start Page, under Audio System Toolbox, select Basic Audio Player
and click Create Model. See “Real-Time Audio in Simulink” on page 8-2 for a tutorial on
Simulink model templates.

Import Audio Plugin Functionality

The MATLAB System block enables you to use System objects in Simulink. You can use
the MATLAB System block with System object plugins only. It is not compatible with
basic plugins. See “Design an Audio Plugin” on page 7-2 for more information about
defining plugins in MATLAB.

1 From the Simulink User-Defined Function library, drag a MATLAB System block to
your model.

 Convert Audio Plugin System Objects to Simulink Blocks

10-3

2 In the MATLAB System block dialog box that opens, enter the name of your System
object: audiopluginexample.DampedVolumeController

3 Press Enter.

The damped volume controller audio plugin allows the user to tune two parameters: gain,
and the transition delay of the applied gain. Damping applied gain reduces artifacts and
creates a smoother overall sound.

Create an Audio Plugin Block Interface

When you import a plugin to a Simulink model, the plugin parameters are set to
the initial values defined in the properties section of the plugin class. To make the
parameters tunable, create an audio plugin block interface. You can create a custom
interface for your block by using block masks. See “Masking Fundamentals” for more
information.

1 Open the Block Parameters user interface (UI) by double-clicking the
DampedVolumeController block.

a Set Gain in decibels to be applied to input audio to the variable G.
b Set TransitionDelay parameter to the variable D.

10 Convert Audio Plugin System Objects to Simulink Blocks

10-4

c Click OK.
2 Make your DampedVolumeController block a subsystem. With the

DampedVolumeController block selected, from the Simulink Editor menu,
select Diagram > Subystem & Model Reference > Create Subsystem from
Selection.

3 Add a mask to your Subsystem block. Select your Subsystem block, and then from
the Simulink Editor menu, select Diagram > Mask > Create Mask.

4 In the Mask Editor, click the Parameters & Dialog tab.
5 Add a dial to the dialog box for controlling volume gain. Drag a Dial from the

Controls pane to the Dialog box pane. Then, in the Property editor pane, set
these properties:

• Name — G
• Value — -19.2
• Prompt — Volume gain:
• Type — dial
• Minimum — -80
• Maximum — 0

 Convert Audio Plugin System Objects to Simulink Blocks

10-5

6 Add a slider to the dialog box for controlling time delay. Drag a Slider from the
Controls pane to the Dialog box pane. Then, in the Property editor pane, set
these properties:

• Name — D
• Value — 0
• Prompt — Time delay:
• Type — slider
• Minimum — 0
• Maximum — 1

10 Convert Audio Plugin System Objects to Simulink Blocks

10-6

7 Click OK.

Add a Time Scope

Add a Time Scope block to your model to visualize your processed signal and the
applied gain.

1 From the DSP System Toolbox™ Sinks library, drag a Time Scope block to your
model.

2 In the Time Scope block dialog box that opens, enter 2 as the number of input
ports:

3 Press Enter.
4 Connect both outputs of your subsystem to the inputs of the Time Scope block.

 Convert Audio Plugin System Objects to Simulink Blocks

10-7

5 Open the Time Scope block and select View > Layout. Display the input ports
separately by setting the layout as a 2-by-1 matrix.

6 Select View > Configuration Properties.
7 On the Time tab, set Time span overrun action to Scroll. Click Apply.
8 On the Display tab:

a Set Active display to 1.
b Set Y-limits (Minimum) to -1 and Y-limits (Maximum) to 1. Click Apply.
c Set Active display to -2.
d Set the Y-limits to -80 and 0. Click OK.

10 Convert Audio Plugin System Objects to Simulink Blocks

10-8

Run the Model

1 To modify the frame size used in your model, double-click the From Multimedia
File block and set Samples per audio channel to 256. Click OK.

2 To open the parameter controls of your DampedVolumeController block, double-
click the Subsystem block.

 Convert Audio Plugin System Objects to Simulink Blocks

10-9

3 To run your model, click . To see and hear the effect of your audio plugin, modify
the Volume Gain and Time Delay parameters of your DampedVolumeController
block plugin in real time.

10 Convert Audio Plugin System Objects to Simulink Blocks

10-10

More About
• “Design an Audio Plugin” on page 7-2
• “Audio Plugin Example Gallery”
• “Real-Time Audio in Simulink” on page 8-2

